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In clinical practice, psychologists frequently participate in the making of vital decisions 
concerning the classification, treatment, prognosis, and disposition of individuals. In their 
attempts to increase the number of correct classifications and predictions, psychologists 
have developed and applied many psychometric devices, such as patterns of test responses 
as well as cutting scores for scales, indices, and sign lists. Since diagnostic and prognostic 
statements can often be made with a high degree of accuracy purely on the basis of actuar-
ial or experience tables (referred to hereinafter as base rates), a psychometric device, to be 
efficient, must make possible a greater number of correct decisions than could be made in 
terms of the base rates alone. The efficiency of the great majority of psychometric devices 
reported in the clinical psychology literature is difficult or impossible to evaluate for the 
following reasons: 

1. Base rates are virtually never reported. It is, therefore, difficult to determine whether or 
not a given device results in a greater number of correct decisions than would be possible 
solely on the basis of the rates from previous experience. When, however, the base rates 
can be estimated, the reported claims of efficiency of psychometric instruments are often 
seen to be without foundation. 

2. In most reports, the distribution data provided are insufficient for the evaluation of the 
probable efficiency of the device in other settings where the base rates are markedly dif-
ferent. Moreover, the samples are almost always too small for the determination of optimal 
cutting lines for various decisions. 

3. Most psychometric devices are reported without cross-validation data. If a psycho-
metric instrument is applied solely to the criterion groups from which it was developed, its 
reported validity and efficiency are likely to be spuriously high, especially if the criterion 
groups are small. 

4. There is often a lack of clarity concerning the type of population in which a psycho-
metric device can be effectively applied. 

5. Results are frequently reported only in terms of significance tests for differences 
between groups rather than in terms of the number of correct decisions for individuals 
within the groups. 

The purposes of this paper are to examine current methodology in studies of predictive 
and concurrent validity (APA, Committee on Test Standards 1954), and to present some 
methods for the evaluation of the efficiency of psychometric devices as well as for the 
improvement in the interpretations made from such devices. Actual studies reported in the 
literature will be used for illustration wherever possible. It should be emphasized that these 
particular illustrative studies of common practices were chosen simply because they 
                                                
1 The senior author carried on his part of this work in connection with his appointment to the 
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contained more complete data than are commonly reported, and were available in fairly 
recent publications. 
Importance of Base Rates 

Danielson and Clark (1954) have reported on the construction and application of a 
personality inventory which was devised for use in military induction stations as an 
aid in detecting those men who would not complete basic training because of 
psychiatric disability or AWOL recidivism. One serious defect in their article is that 
it reports cutting lines which have not been cross validated. Danielson and Clark 
state that inductees were administered the Fort Ord Inventory within two days after 
induction into the Army, and that all of these men were allowed to undergo basic 
training regardless of their test scores. 

Two samples (among others) of these inductees were selected for the study of 
predictive validity: (a) A group of 415 men who had made a good adjustment 
(Good Adjustment Group), and (b) a group of 89 men who were unable to complete 
basic training and who were sufficiently disturbed to warrant a recommendation for 
discharge by a psychiatrist (Poor Adjustment Group). The authors state that “the 
most important task of a test designed to screen out misfits is the detection of the 
(latter) group” (Danielson & Clark, 1954, p. 139). The authors found that their most 
effective scale for this differentiation picked up, at a given cutting point, 55% of the 
Poor Adjustment Group (valid positives) and 19% of the Good Adjustment Group 
(false positives). The overlap between these two groups would undoubtedly have 
been greater if the cutting line had been cross validated on a random sample from 
the entire population of inductees, but for the purposes of the present discussion, let 
us assume that the results were obtained from cross-validation groups. There is no 
mention of the percentage of all inductees who fall into the Poor Adjustment Group, 
but a rough estimate will be adequate for the present discussion. Suppose that in 
their population of soldiers, as many as 5% make a poor adjustment and 95% make 
a good adjustment. The results for 10,000 cases would be as depicted in Table 1. 
 

TABLE 1 
Number of Inductees in the Poor Adjustment and Good Adjustment Groups 

Detected By a Screening Inventory 
(55% Valid Positives; 19% False Positives) 

 Actual Adjustment  

Predicted 
Adjustment 

Poor Good Total 
Predicted No. % No. % 

Poor 275 55 1,805 19 2,080 

Good 225 45 7,695 81 7,920 

Total Actual 500 100 9,500 100 10,000 

Efficiency in detecting poor adjustment cases. The efficiency of the scale can be evalu-
ated in several ways. From the data in Table 1 it can be seen that if the cutting line given by 
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the authors were used at Fort Ord, the scale could not be used directly to “screen out 
misfits.” If all those predicted by the scale to make a poor adjustment were screened out, the 
number of false positives would be extremely high. Among the 10,000 potential inductees, 
2080 would be predicted to make a poor adjustment. Of these 2080, only 275, or 13%, 
would actually make a poor adjustment, whereas the decisions for 1805 men, or 87% of 
those screened out, would be incorrect. 

Efficiency in prediction for all cases. If a prediction were made for every man on the 
basis of the cutting line given for the test, 275 + 7695, or 7970, out of 10,000 decisions 
would be correct. Without the test, however, every man would be predicted to make a good 
adjustment, and 9500 of the predictions would be correct. Thus, use of the test has yielded a 
drop from 95% to 79.7% in the total number of correct decisions. 

Efficiency in detecting good adjustment cases. There is one kind of decision in which the 
Inventory can improve on the base rates, however. If only those men are accepted who are 
predicted by the Inventory to make a good adjustment, 7920 will be selected, and the 
outcome of 7695 of the 7920, or 97%, will be predicted correctly. This is a 2% increase in 
hits among predictions of “success.” The decision as to whether or not the scale improves 
on the base rates sufficiently to warrant its use will depend on the cost of administering the 
testing program, the administrative feasibility of rejecting 21% of the men who passed the 
psychiatric screening, the cost to the Army of training the 225 maladaptive recruits, and the 
intangible human costs involved in psychiatric breakdown. 

Populations to which the scale is applied. In the evaluation of the efficiency of any 
psychometric instrument, careful consideration must be given to the types of populations to 
which the device is to be applied. Danielson and Clark (1954, p. 138) have stated that 
“since the final decision as to disposition is made by the psychiatrist, the test should be 
classified as a screening adjunct.” This statement needs clarification, however, for the 
efficiency of the scale can vary markedly according to the different ways in which it might 
be used as an adjunct. 

It will be noted that the test was administered to men who were already in the Army, and 
not to men being examined for induction. The reported validation data apply, therefore, 
specifically to the population of recent inductees. The results might have been somewhat 
different if the population tested consisted of potential inductees. For the sake of illus-
tration, however, let us assume that there is no difference in the test results of the two 
populations. 

An induction station psychiatrist can use the scale cutting score in one or more of the 
following ways, that is, he can apply the scale results to a variety of populations. (a) The 
psychiatrist’s final decision to accept or reject a potential inductee may be based on both 
the test score and his usual interview procedure. The population to which the test scores are 
applied is, therefore, potential inductees interviewed by the usual procedures for whom no 
decision was made. (b) He may evaluate the potential inductee according to his usual 
procedures, and then consult the test score only if the tentative decision is to reject. That is, 
a decision to accept is final. The population to which the test scores are applied is potential 
inductees tentatively rejected by the usual interview procedures. (c) An alternative pro-
cedure is for the psychiatrist to consult the test score only if the tentative decision is to 
accept, the population being potential inductees tentatively accepted by the usual interview 
procedures. The decision to reject is final. (d) Probably the commonest proposal for the use 
of tests as screening adjuncts is that the more skilled and costly psychiatric evaluation 
should be made only upon the test positives, that is, inductees classified by the test as good 
risks are not interviewed, or are subjected only to a very short and superficial interview. 
Here the population is all potential inductees, the test being used to make either a final 
decision to “accept” or a decision to “examine.” 



 4 
 

Among these different procedures, how is the psychiatrist to achieve maximum effective-
ness in using the test as an adjunct? There is no answer to this question from the available 
data, but it can be stated definitely that the data reported by Danielson and Clark apply only 
to the third procedure described above. The test results are based on a selected group of 
men accepted for induction and not on a random sample of potential inductees. If the scale 
is used in any other way than the third procedure mentioned above, the results may be 
considerably inferior to those reported, and, thus, to the use of the base rates without the 
test.2 

The principles discussed thus far, although illustrated by a single study, can be general-
ized to any study of predictive or concurrent validity. It can be seen that many consider-
ations are involved in determining the efficiency of a scale at a given cutting score, 
especially the base rates of the subclasses within the population to which the psychometric 
device is to be applied. In a subsequent portion of this paper, methods will be presented for 
determining cutting points for maximizing the efficiency of the different types of decisions 
which are made with psychometric devices. 

Another study will be utilized to illustrate the importance of an explicit statement of the 
base rates of population subgroups to be tested with a given device. Employing an interest-
ing configural approach, Thiesen (1952) discovered five Rorschach patterns, each of which 
differentiated well between 60 schizophrenic adult patients and a sample of 157 gainfully 
employed adults. The best differentiator, considering individual patterns or number of 
patterns, was Pattern A, which was found in 20% of the patients’ records and in only .6% 
of the records of normals. Thiesen concludes that if these patterns stand the test of cross 
validation, they might have “clinical usefulness” in early detection of a schizophrenic 
process or as an aid to determining the gravity of an initial psychotic episode (Thiesen, 
1952, p. 369). If by “clinical usefulness” is meant efficiency in a clinic or hospital for the 
diagnosis of schizophrenia, it is necessary to demonstrate that the patterns differentiate a 
higher percentage of schizophrenic patients from other diagnostic groups than could be 
correctly classified without any test at all, that is, solely on the basis of the rates of various 
diagnoses in any given hospital. If a test is to be used in differential diagnosis among 
psychiatric patients, evidence of its efficiency for this function cannot be established solely 
on the basis of discrimination of diagnostic groups from normals. If by “clinical useful-
ness” Thiesen means that his data indicate that the patterns might be used to detect an early 
schizophrenic process among nonhospitalized gainfully employed adults, he would do 
better to discard his patterns and use the base rates, as can be seen from the following data. 

Taulbee and Sisson (1954) cross validated Thiesen’s patterns on schizophrenic patient 
and normal samples, and found that Pattern A was the best discriminator. Among patients, 
8.1% demonstrated this pattern, and among normals, none had this pattern. There are 
approximately 60 million gainfully employed adults in this country, and it has been 
estimated that the rate of schizophrenia in the general population is approximately .85% 
(Anastasi & Foley, 1949, p. 558). The results for Pattern A among a population of 10,000 
gainfully employed adults would be as shown in Table 2. In order to detect 7 schizophre-
nics, it would be necessary to test 10,000 individuals. 

In the Neurology service of a hospital a psychometric scale is used which is designed to 
differentiate between patients with psychogenic and organic low back pain (Hanvik, 1949). 
At a given cutting point, this scale was found to classify each group with approximately 
70% effectiveness upon cross validation, that is, 70% of cases with no organic findings 
scored above an optimal cutting score, and 70% of surgically verified organic cases scored 
                                                
2 Goodman (1953) has discussed this same problem with reference to the supplementary use of an 
index for the prediction of parole violation. 
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below this line. Assume that 90% of all patients in the Neurology service with a primary 
complaint of low back pain are in fact “organic.” Without any scale at all the psychologist 
can say every case is organic, and be right 90% of the time. With the scale the results 
would be as shown in Section A of Table 3. Of 10 psychogenic cases, 7 score above the 
line; of 90 organic cases, 63 score below the cutting line. If every case above the line is 
called psychogenic, only 7 of 34 will be classified correctly, or about 21%. Nobody wants 
to be right only one out of five times in this type of situation, so that it is obvious that it 
would be imprudent to call a patient psychogenic on the basis of this scale. Radically 
different results occur in prediction for cases below the cutting line. Of 66 cases 63, or 
95%, are correctly classified as organic. Now the psychologist has increased his diagnostic 
hits from 90 to 95% on the condition that he labels only cases falling below the line, and 
ignores the 34% scoring above the line. 

TABLE 2 
Number of Persons Classified as Schizophrenic and Normal 

by a Test Pattern Among a Population of Gainfully Employed Adults  
(8.1% valid positives; 0.0% false positives) 

 Criterion Classification  

Classification 
by Test 

Schizophrenia Normal Total Classified 
by Test No. % No. % 

Schizophrenia 7 8.1 0 0 7 

Normal 78 91.9 9,915 100 9,993 

Total in class 81 100    9,915 100 10,000 

 
TABLE 3 

Number of Patients Classified as Psychogenic and Organic on a Low Back Pain Scale 
Which Classifies Correctly 70% of Psychogenic and Organic Cases 

Classification 
by Scale 

Actual Diagnosis Total  
Classified 
by Scale Psychogenic Organic 

A. Base Rates in Population Tested: 90% Organic; 10% Psychogenic 
   Psychogenic 7 27 34 
   Organic 3 63 66 

Total diagnosed 10 90 100 

B. Base Rates in Population Tested: 90% Psychogenic; 10% Organic 
   Psychogenic 63 3 66 
   Organic 27 7 34 

Total diagnosed 90 10 100 

In actual practice, the psychologist may not, and most likely will not, test every low back 
pain case. Probably those referred for testing will be a select group, that is, those who the 
neurologist believes are psychogenic because neurological findings are minimal or absent. 
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This fact changes the population from “all patients in Neurology with a primary complaint 
of low back pain,” to “all patients in Neurology with a primary complaint of low back pain 
who are referred for testing.” Suppose that a study of past diagnoses indicated that of 
patients with minimal or absent findings, 90% were diagnosed as psychogenic and 10% as 
organic. Section B of Table 3 gives an entirely different picture of the effectiveness of the 
low back pain scale, and new limitations on interpretation are necessary. Now the scale 
correctly classifies 95% of all cases above the line as psychogenic (63 of 66), and is correct 
in only 21% of all cases below the line (7 of 34). In this practical situation the psychologist 
would be wise to refrain from interpreting a low score. 

From the above illustrations above it can be seen that the psychologist in interpreting a 
test and in evaluating its effectiveness must be very much aware of the population and its 
subclasses and the base rates of the behavior or event with which he is dealing at any given 
time. 

It may be objected that no clinician relies on just one scale but would diagnose on the 
basis of a configuration of impressions from several tests, clinical data and history. We 
must, therefore, emphasize that the preceding single-scale examples were presented for 
simplicity only, but that the main point is not dependent upon this “atomism.” Any complex 
configurational procedure in any number of variables, psychometric or otherwise, eventu-
ates in a decision. Those decisions have a certain objective success rate in criterion case 
identification; and for present purposes we simply treat the decision function, whatever its 
components and complexity may be, as a single variable. It should be remembered that the 
literature does not present us with cross-validated methods having hit rates much above 
those we have chosen as examples, regardless of how complex or configural the methods 
used. So that even if the clinician approximates an extremely complex configural function 
“in his head” before classifying the patient, for purposes of the present problem this com-
plex function is treated as the scale. In connection with the more general “philosophy” of 
clinical decision making see Bross (1953) and Meehl (1954/1996). 

Applications of Bayes’ Theorem 
Many readers will recognize the preceding numerical examples as essentially involving a 

principle of elementary probability theory, the so-called “Bayes’ Theorem.” While it has 
come in for some opprobrium on account of its connection with certain pre-Fisherian 
fallacies in statistical inference, as an algebraic statement the theorem has, of course, 
nothing intrinsically wrong with it and it does apply in the present case. One form of it may 
be stated as follows: If there are k antecedent conditions under which an event of a given 
kind may occur, these conditions having the antecedent probabilities P1, P2, . . . Pk of being 
realized, and the probability of the event upon each of them is p1, p2, p3, . . . pk; then, given 
that the event is observed to occur, the probability that it arose on the basis of a specified 
one, say j, of the antecedent conditions is given by 

   

Pj(o) =
Pj p j

Σ
i=1

k

Pi pi

.  

The usual illustration is the case of drawing marbles from an urn. Suppose we have two 
urns, and the urn-selection procedure is such that the probability of our choosing the first 
urn is 1⁄10 and the second 9⁄10. Assume that 70% of the marbles in the first urn are 
black, and 40% of those in the second urn are black. I now (blindfolded) “choose” an urn 
and then, from it, I choose a marble. The marble turns out to be black. What is the 
probability that I drew from the first urn? 
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P1 = .10  P2 = .90 

p1 = .70  p2 = .40 

Then 

  
P1(b) =

(.10)(.70)
(.10)(.70)+ (.90)(.40)

= .163.  

If I make a practice of inferring under such circumstances that an observed black marble 
arose from the first urn, I shall be correct in such judgments, in the long run, only 16.3% of 
the time. Note, however, that the “test item” or “sign” black marble is correctly “scored” in 
favor of Urn No. 1, since there is a 30% difference in black marble rate between it and Urn 
No. 2. But this considerable disparity in symptom rate is overcome by the very low base 
rate (“antecedent probability of choosing from the first urn”), so that inference to first-urn 
origin of black marbles will actually be wrong some 84 times in 100. In the clinical 
analogue, the urns are identified with the subpopulations of patients to be discriminated 
(their antecedent probabilities being equated to their base rates in the population to be 
examined), and the black marbles are test results of a certain (“positive”) kind. The 
proportion of black marbles in one urn is the valid positive rate, and in the other is the false 
positive rate. Inspection and suitable manipulations of the formula for the common two-
category case, viz., 

  
Pd (o) =

Pp1

Pp1 +Qp2

 

 Pd(o)  =  Probability that an individual is diseased, given that his observed  
test score is positive 

 P  =  Base rate of actual positives in the population examined 
 P + Q  =  1 
 p1  =  Proportion of diseased identified by test (“valid positive” rate) 
 q1  =  1 – p1 
 p2  =  Proportion of nondiseased misidentified by test as being diseased  
   (“false positive” rate) 
 q2  =  1 – p2 

yields several useful statements. Note that in what follows we are operating entirely with 
exact population parameter values; that is, sampling errors are not responsible for the 
dangers and restrictions set forth. See Table 4. 

1. In order for a positive diagnostic assertion to be “more likely true than false,” the ratio 
of the positive to the negative base rates in the examined population must exceed the  
ratio of the false positive rate to the valid positive rate. That is, 

  

P
Q

>
p2

p1

.  

If this condition is not met, the attribution of pathology on the basis of the test is more 
probably in error than correct, even though the sign being used is valid (i.e., p1 ≠ p2). 

Example: If a certain cutting score identifies 80% of patients with organic brain damage 
(high scores being indicative of damage) but is also exceeded by 15% of the nondamaged 
sent for evaluation, in order for the psychometric decision “brain damage present” to be 
more often true than false, the ratio of actually braindamaged to nondamaged cases among 
all seen for testing must be at least one to five (.19). 
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Piotrowski has recommended that the presence of 5 or more Rorschach signs among 10 
“organic” signs is an efficient indicator of brain damage. Dorken and Kral (1952), in cross 
validating Piotrowski’s index, found that 63% of organics and 30% of a mixed, nonorganic, 
psychiatric patient group had Rorschachs with 5 or more signs. Thus, our estimate of p2⁄p1 
= .30⁄.63 = .48, and in order for the decision “brain damage present” to be correct more 
than one-half the time, the proportion of positives (P) in a given population must exceed 
.33 (i.e., P⁄Q > .33⁄.67). Since few clinical populations requiring this clinical decision 
would have such a high rate of brain damage, especially among psychiatric patients, the 
particular cutting score advocated by Piotrowski will produce an excessive number of false 
positives, and the positive diagnosis will be more often wrong than right. Inasmuch as the 
base rates for any given behavior or pathology differ from one clinical setting to another, 
an inflexible cutting score should not be advocated for any psychometric device. This state-
ment applies generally—thus, to indices recommended for such diverse purposes as the 
classification or detection of deterioration, specific symptoms, “traits,” neuroticism, sexual 
aberration, dissimulation, suicide risk, and the like. When P is small, it may be advisable to 
explore the possibility of dealing with a restricted population within which the base rate of 
the attribute being tested is higher. This approach is discussed in an article by Rosen (1954) 
on the detection of suicidal patients in which it is suggested that an attempt might be made 
to apply an index to sub-populations with higher suicide rates. 

2. If the base rates are equal, the probability of a positive diagnosis being correct is the 
ratio of valid positive rate to the sum of valid and false positive rates. That is, 

  
pd (o) =

p1

p1 + p2

    if  P = Q = ½. 

Example: If our population is evenly divided between neurotic and psychotic patients the 
condition for being “probably right” in diagnosing psychosis by a certain method is simply 
that the psychotics exhibit the pattern in question more frequently than the neurotics. This 
is the intuitively obvious special case; it is often misgeneralized to justify use of the test in 

TABLE 4 

Definition of Symbols 

Diagnosis  
from Test 

Actual Diagnosis 

Positive Negative 

Positive 
p1 

Valid positive rate (Proportion 
of positives called positive) 

p2 
False positive rate (Proportion of 

negatives called positive) 

Negative 
q1 

False negative rate (Proportion 
of positives called negative) 

q2 
Valid negative rate (Proportion of 

negatives called negative) 

Total with actual 
diagnosis 

p1 + q1 = 1.0 
(Total positives) 

p2 + q2 = 1.0 
(Total negatives) 

Note.— For simplicity, the term “diagnosis” is used to denote the classification of any kind of pathology, 
behavior, or event being studied, or to denote “outcome” if a test is used for prediction. Since horizontal 
addition (e.g., p1 + p2) is meaningless in ignorance of the base rates, there is no symbol or marginal total 
for these sums. All values are parameter values. 
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those cases where base-rate asymmetry (P ≠ Q) counteracts the (p1 – p2) discrepancy, lead-
ing to the paradoxical consequence that deciding on the basis of more information can 
actually worsen the chances of a correct decision. The apparent absurdity of such an idea 
has often misled psychologists into behaving as though the establishment of “validity” or 
“discrimination,” that is, that p1 ≠ p2, indicates that a procedure should be used in decision 
making. 

Example: A certain test is used to select those who will continue in outpatient psycho-
therapy (positives). It correctly identifies 75% of these good cases but the same cutting 
score picks up 40% of the poor risks who subsequently terminate against advice. Suppose 
that in the past experience of the clinic 50% of the patients terminated therapy prematurely. 
Correct selection of patients can be made with the given cutting score on the test 65% of 
the time, since p1⁄(p1 + p2) = .75⁄(.75 + .40) = .65. It can be seen that the efficiency of the 
test would be exaggerated if the base rate for continuation in therapy were actually .70, but 
the efficiency were evaluated solely on the basis of a research study containing equal 
groups of continuers and noncontinuers, that is, if it were assumed that P = .50. 

3. In order for the hits in the entire population which is under consideration to be 
increased by use of the test, the base rate of the more numerous class (called here positive) 
must be less than the ratio of the valid negative rate to the sum of valid negative and false 
negative rates. That is, unless  

  
P <

q2

q1 + q2

,  

the making of decisions on the basis of the test will have an adverse effect. An alternative 
expression is that (P⁄Q) < (q2⁄q1) when P > Q, that is, the ratio of the larger to the 
smaller class must be less than the ratio of the valid negative rate to the false negative rate. 
When P < Q, the conditions for the test to improve upon the base rates are: 

  
Q <

p1

p1 + p2

 

and 

  

Q
P
<

p1

p2

.  

Rotter, Rafferty, and Lotsof (1954) have reported the scores on a sentence completion  
test for a group of 33 “maladjusted” and 33 “adjusted” girls. They report that the use of  
a specified cutting score (not cross validated) will result in the correct classification of  
85% of the maladjusted girls and the incorrect classification of only 15% of the adjusted 
girls. It is impossible to evaluate adequately the efficiency of the test unless one knows  
the base rates of maladjustment (P) and adjustment (Q) for the population of high school 
girls, although there would be general agreement that Q > P. Since p1⁄(p1 + p2) = 
.85⁄(.85 + .15) = .85, the overall hits in diagnosis with the test will not improve on 
classification based solely on the base rates unless the proportion of adjusted girls is less 
than .85. Because the reported effectiveness of the test is spuriously high, the proportion  
of adjusted girls would no doubt have to be considerably less than .85. Unless there is  
good reason to believe that the base rates are similar from one setting to another, it is 
impossible to determine the efficiency of a test such as Rotter’s when the criterion is based 
on ratings unless one replicates his research, including the criterion ratings, with a repre-
sentative sample of each new population. 

4. In altering a sign, improving a scale, or shifting a cutting score, the increment in valid 
positives per increment in valid positive rate is proportional to the positive base rate; and 
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analogously, the increment in valid negatives per increment in valid negative rate is 
proportional to the negative base rate. That is, if we alter a sign the net improvement in 
over-all hit rate is 

H′T – HT = ∆p1P + ∆q2Q, 

where HT = original proportion of hits (over-all) and H′T = new proportion of hits (over-all). 
5. A corollary of this is that altering a sign or shifting a cut will improve our decision 

making if, and only if, the ratio of improvement ∆p1 in valid positive rate to worsening ∆p2 
in false negative rate exceeds the ratio of actual negatives to positives in the population. 

  

Δp1

Δp2

> Q
P

.  

Example: Suppose we improve the intrinsic validity of a certain “schizophrenic index” so 
that it now detects 20% more schizophrenics than it formerly did, at the expense of only a 
5% increase in the false positive rate. This surely looks encouraging. We are, however, 
working with an outpatient clientele only l⁄10th of whom are actually schizophrenic. Then, 
since 

∆p1 = .20 P = .10 
∆p2 = .05 Q = .90 

applying the formula we see that 

  
.20
.05
≯ .90

.10
. 

that is, the required inequality does not hold, and the routine use of this “improved” index 
will result in an increase in the proportion of erroneous diagnostic decisions. 

In the case of any pair of unimodal distributions, this corresponds to the principle that the 
optimal cut lies at the intersection of the two distribution envelopes (Horst, 1941, pp. 271-
272). 

Manipulation of Cutting Lines for Different Decisions 
For any given psychometric device, no one cutting line is maximally efficient for clinical 

settings in which the base rates of the criterion groups in the population are different. 
Furthermore, different cutting lines may be necessary for various decisions within the same 
population. In this section, methods are presented for manipulating the cutting line of any 
instrument in order to maximize the efficiency of a device in the making of several kinds of 
decisions. Reference should be made to the scheme presented in Table 5 for understanding 
of the discussion which follows. This scheme and the methods for manipulating cutting 
lines are derived from Duncan, Ohlin, Reiss, and Stanton (1953). 

A study in the prediction of juvenile delinquency by Glueck and Glueck (1950) will be 
used for illustration. Scores on a prediction index for 451 delinquents and 439 non-
delinquents (1950, p. 261) are listed in Table 6. If the Gluecks’ index is to be used in a 
population with a given juvenile delinquency rate, cutting lines can be established to 
maximize the efficiency of the index for several decisions. In the following illustration, a 
delinquency rate of .20 will be used. From the data in Table 6, optimal cutting lines will be 
determined for maximizing the proportion of correct predictions, or hits, for all cases (HT), 
and for maximizing the proportion of hits (HP) among those called delinquent (positives) by 
the index. 
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TABLE 5 
Symbols to Be Used in Evaluating the Efficiency of a Psychometric Device 

in Classification or Prediction 

Diagnosis from 
Test 

Actual Diagnosis Total Diagnosed  
from Test Positive Negative 

Positive 
NPp1 

(Number of  
valid positives) 

NQp2 
(Number of  

false positives) 

NPp1 + NQp2 
(Number of  

test positives) 

Negative 
NPq1 

(Number of  
false negatives) 

NQq2 
(Number of  

valid negatives) 

NPq1 + NQq2 
(Number of  

test negatives) 

Total with actual 
diagnosis 

NP 
(Number of  

actual positives) 

NQ 
(Number of  

actual negatives) 

N 
(Total number of cases) 

Note.— For simplicity, the term “diagnosis” is used to denote the classification of any kind of pathology, 
behavior, or event being studied, or to denote “outcome” if a test is used for prediction. “Number” means 
absolute frequency, not rate or probability. 

In the first three columns of Table 6, “f” denotes the number of delinquents scoring in 
each class interval, “cf” represents the cumulative frequency of delinquents scoring above 
each class interval (e.g., 265 score above 299), and p1 represents the proportion of the total 
group of 451 delinquents scoring above each class interval. Columns 4, 5, and 6 present the 
same kind of data for the 439 nondelinquents. 

TABLE 6 
Prediction Index Scores for Juvenile Delinquents and Nondelinquents and Other Statistics for Determining 

Optimal Cutting Lines for Certain Decisions in a Population with a Delinquency Rate of .20 
 Delinquents Nondelinquents  

Prediction 
Index 
Score 

  
cf⁄451   cf⁄43

9 
1–p2 .2p1 .8p2 .8q2   Pp1 +Qq2

 
  Pp1 +Qp2

 
  Pp1 / RP

 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) 
f cf p1 f cf p2 q2 Pp1 Qp2 Qq2 HT RP HP 

400+ 51 51 .1131 1 1 .0023 .9977 .0226 .0018 .7982 .821 .024 .926 
350-399 73 124 .2749 8 9 .0205 .9795 .0550 .0164 .7836 .839 .071 .770 
300-349 141 265 .5876 23 32 .0729 .9271 .1175 .0583 .7417 .859 .176 .668 
250-299 122 387 .8581 70 102 .2323 .7677 .1716 .1858 .6142 .786 .357 .480 
200-249 40 427 .9468 68 170 .3872 .6128 .1894 .3098 .4902 .680 .499 .379 
150-199 19 446 .9889 102 272 .6196 .3804 .1978 .4957 .3043 .502 .694 .285 

<150 5 451 1.0000 167 439 1.0000 .0000 .2000 .8000 .0000 .200 1.0000 .200 
Note.— Frequencies in columns 1 and 4 are from Glueck and Glueck (1950, p. 261) 

Maximizing the number of correct predictions or classifications for all cases. The 
proportion of correct predictions or classifications (HT) for any given cutting line is given 
by the formula, HT = Pp1 + Qq2. Thus, in column 11 of Table 6, labelled HT, it can be seen 
that the best cutting line for this decision would be between 299 and 300, for 85.9% of all 
predictions would be correct if those above the line were predicted to become delinquent 
and all those below the line nondelinquent. Any other cutting line would result in a smaller 
proportion of correct predictions, and, in fact, any cutting line set lower than this point 
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would make the index inferior to the use of the base rates, for if all cases were predicted to 
be nondelinquent, the total proportion of hits would be .80. 

Maximizing the number of correct predictions or classifications for positives. The 
primary use of a prediction device may be for selection of (a) students who will succeed in 
a training program, (b) applicants who will succeed in a certain job, (c) patients who will 
benefit from a certain type of therapy, and the like. In the present illustration, the index 
would most likely be used for detection of those who are likely to become delinquents. 
Thus, the aim might be to maximize the number of hits only within the group predicted by 
the index to become delinquents (predicted positives = NPp1 + NQp2). The proportion of 
correct predictions for this group by the use of different cutting lines is given in column 13, 
labelled HP. Thus, if a cutting line is set between 399 and 400, one will be correct over 92 
times in 100 if predictions are made only for persons scoring above the cutting line. The 
formula for determining the efficiency of the test when only positive predictions are made 
is HP = Pp1⁄(Pp1 + Qp2). 

One has to pay a price for achieving a very high level of accuracy with the index. Since 
the problem is to select potential delinquents so that some sort of therapy can be attempted, 
the proportion of this selected group in the total sample may be considered as a selection 
ratio. The selection ratio for positives is RP = Pp1 + Qp2, that is, predictions are made only 
for those above the cutting line. The selection ratio for each posssible cutting line is shown 
in column 12 of Table 6, labelled RP. It can be seen that to obtain maximum accuracy in 
selection of delinquents (92.6%), predictions can be made for only 2.4% of the population. 
For other cutting lines, the accuracy of selection and the corresponding selection ratios are 
given in Table 6. The worker applying the index must use his own judgment in deciding 
upon the level of accuracy and the selection ratio desired. 

Maximizing the number of correct predictions or classifications for negatives. In some 
selection problems, the goal is the selection of negatives rather than positives. Then, the 
proportion of hits among all predicted negative for any given cutting line is 
HN = Qq2⁄(Qq2 + Pq1), and the selection ratio for negatives is RN = Pq1 + Qq2. 

In all of the above manipulations of cutting lines, it is essential that there be a large 
number of cases. Otherwise, the percentages about any given cutting line would be so 
unstable that very dissimilar results would be obtained on new samples. For most studies in 
clinical psychology, therefore, it would be necessary to establish cutting lines according to 
the decisions and methods discussed above, and then to cross validate a specific cutting line 
on new samples. 

The amount of shrinkage to be expected in the cross validation of cutting lines cannot be 
determined until a thorough mathematical and statistical study of the subject is made. It 
may be found that when criterion distributions are approximately normal and large, cutting 
lines should be established in terms of the normal probability table rather than on the basis 
of the observed p and q values found in the samples. In a later section dealing with the 
selection ratio we shall see that it is sometimes the best procedure to select all individuals 
falling above a certain cutting line and to select the others needed to reach the selection 
ratio by choosing at random below the line; or in other cases to establish several different 
cuts defining ranges within which one or the opposite decision should be made. 

Decisions based on score intervals rather than cutting lines. The Gluecks’ data can be 
used to illustrate another approach to psychometric classification and prediction when 
scores for large samples are available with a relatively large number of cases in each score 
interval. In Table 7 are listed frequencies of delinquents and nondelinquents for prediction 
index score intervals. The frequencies for delinquents are the same as those in Table 6, 
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whereas those for nondelinquents have been corrected for a base rate of .20 by multiplying 
each frequency in column 4 of Table 63 by 

 
4.11= (.80)

(.20)
(451)
(439)

.  [frequencies corrected from typos 
in original publication.—LJY] 

 
TABLE 7 

Percentage of Delinquents (D) and Nondelinquents (ND) in Each Prediction Index Score Interval 
in a Population in Which the Delinquency Rate is .20* 

Prediction 
Index Score 

Interval 
No. of D No. of ND Total of D 

and ND 

% of D 
in Score 
Interval 

% of ND 
in Score 
Interval 

% of D and 
ND in Score 

Interval 

400+ 51 4 55 92.7 7.3 100 
350-399 73 33 106 68.9 31.1 100 
300-349 141 95 236 59.7 40.3 100 
250-299 122 288 410 29.8 70.2 100 
200-249 40 279 319 12.5 87.5 100 
150-199 19 419 438 4.3 95.7 100 

<150 5 686 691 .7 99.3 100 

Total 451 1804 2255    
*Modification of Table XX-2 from Glueck and Glueck (1950, p. 261). 
 
Table 7 indicates the proportion of delinquents and nondelinquents among all juveniles 
who fall within a given score interval when the base rate of delinquency is .20. It can be 
predicted that of those scoring 400 or more, 92.7% will become delinquent; of those 
scoring between 350 and 399, 68.9% will be delinquent, and so forth. Likewise, of those 
scoring between 200 and 249, it can be predicted that 87.5% will not become delinquent. 
Since 80% of predictions will be correct without the index if all cases are called 
nondelinquent, one would not predict nondelinquency with the index in score intervals over 
249. Likewise, it would be best not to predict delinquency for individuals in the intervals 
under 250 because 20% of predictions will be correct if the base rate is used. 

It should be emphasized that there are different ways of quantifying one’s clinical errors, 
and they will, of course, not all give the same evaluation when applied in a given setting. 
“Percentage of valid positives” (= p1) is rarely if ever meaningful without the correlated 
“percentage of false positives” (= p2), and clinicians are accustomed to the idea that we pay 
for an increase in the first by an increase in the second, whenever the increase is achieved 
not by an improvement in the test’s intrinsic validity but by a shifting of the cutting score. 
But the two quantities p1 and p2 do not define our over-all hit frequency, which depends 
also upon the base rates P and Q. The three quantities p1, p2, and P do, however, contain all 
the information needed to evaluate the test with respect to any given sign or cutting score 
that yields these values. Although p1, p2, and P contain the relevant information, other 
forms of it may be of greater importance. No two of these numbers, for example, answer 
the obvious question most commonly asked (or vaguely implied) by psychiatrists when an 
inference is made from a sign, viz., “How sure can you be on the basis of that sign?” The 
                                                
3 The Gluecks’ Tables XX-2, 3, 4, 5 (1950, pp. 261-262), and their interpretations therefrom are apt 
to be misleading because of their exclusive consideration of approximately equal base rates of delin-
quency and nondelinquency. Reiss (1951), in his review of the Gluecks’ study, has also discussed 
their use of an unrepresentative rate of delinquency. 
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answer to this eminently practical query involves a probability different from any of the 
above, namely, the inverse probability given by Bayes’ formula: 

  
HP =

Pp1

Pp1 +Qp2

.  

Even a small improvement in the hit frequency to H′T = Pp1 + Qq2 over the HT = P attain-
able without the test may be adjudged as worthwhile when the increment ∆HT is multiplied 
by the N examined in the course of one year and is thus seen to involve a dozen lives or a 
dozen curable schizophrenics. On the other hand, the simple fact that an actual shrinkage in 
total hit rate may occur seems to be unappreciated or tacitly ignored by a good deal of 
clinical practice. One must keep constantly in mind that numerous diagnostic, prognostic, 
and dynamic statements can be made about almost all neurotic patients (e.g., “depressed,” 
“inadequate ability to relate,” “sexual difficulties”) or about very few patients (e.g., 
“dangerous,” “will act out in therapy,” “suicidal,” “will blow up into a schizophrenia”). A 
psychologist who uses a test sign that even cross validates at p1 = q2 = 80% to determine 
whether “depression” is present or absent, working in a clinical population where prac-
tically everyone is fairly depressed except a few psychopaths and old-fashioned hysterics, 
is kidding himself, the psychiatrist, and whoever foots the bill. 

“Successive-Hurdles” Approach 
Tests having low efficiency, or having moderate efficiency but applied to populations 

having very unbalanced base rates (P ≫ Q) are sometimes defended by adopting a “crude 
initial screening” frame of reference, and arguing that certain other procedures (whether 
tests or not) can be applied to the subset identified by the screener (“successive hurdles”). 
There is no question that in some circumstances (e.g., military induction, or industrial 
selection with a large labor market) this is a thoroughly defensible position. However, as a 
general rule one should examine this type of justification critically, with the preceding 
considerations in mind. Suppose we have a test which distinguishes brain-tumor from non-
brain-tumor patients with 75% accuracy and no differential bias (p1 = q2  = .75). Under such 
circumstances the test hit rate HT is .75 regardless of the base rate. If we use the test in 
making our judgments, we are correct in our diagnoses 75 times in 100. But suppose only 
one patient in 10 actually has a brain tumor, we will drop our over-all “success” from 90% 
(attainable by diagnosing “No tumor” in all cases) to 75%. We do, however, identify 3 out 
of 4 of the real brain tumors, and in such a case it seems worth the price. The “price” has 
two aspects to it: We take time to give the test, and, having given it, we call many “tumor-
ous” who are not. Thus, suppose that in the course of a year we see 1000 patients. Of these, 
900 are non-tumor, and we erroneously call 225 of these “tumor.” To pick up (100) (.75) = 
75 of the tumors, all 100 of whom would have been called tumor-free using the base rates 
alone, we are willing to mislabel 3 times this many as tumorous who are actually not. 
Putting it another way, whenever we say “tumor” on the basis of the test, the chances are 3 
to 1 that we are mistaken. When we “rule out” tumor by the test, we are correct 96% of the 
time, an improvement of only 6% in the confidence attachable to a negative finding over 
the confidence yielded by the base rates.4 
                                                
4 Improvements are expressed throughout this article as absolute increments in percentage of hits, 
because: (a) This avoids the complete arbitrariness involved in choosing between original hit rate 
and miss rate as starting denominator; and (b) for the clinician, the person is the most meaningful 
unit of gain, rather than a proportion of a proportion (especially when the reference proportion is 
very small). 
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Now, picking up the successive-hurdles argument, suppose a major decision (e.g., 
exploratory surgery) is allowed to rest upon a second test which is infallible but for 
practically insuperable reasons of staff, time, and the like, cannot be routinely given. We 
administer Test 2 only to “positives” on (screening) Test 1. By this tactic we eliminate all 
225 false positives left by Test 1, and we verify the 75 valid positives screened in by Test 1. 
The 25 tumors that slipped through as false negatives on Test 1 are, of course, not picked 
up by Test 2 either, because it is not applied to them. Our total hit frequency is now 97.5%, 
since the only cases ultimately misclassified out of our 1000 seen are these 25 tumors 
which escaped through the initial sieve Test 1. We are still running only 7.5% above the 
base rate. We have had to give our short-and-easy test to 1000 individuals and our cumber-
some, expensive test to 300 individuals, 225 of whom turn out to be free of tumor. But we 
have located 75 patients with tumor who would not otherwise have been found. 

Such examples suggest that, except in “life-or-death” matters, the successive-screenings 
argument merely tends to soften the blow of Bayes’ Rule in cases where the base rates are 
very far from symmetry. Also, if Test 2 is not assumed to be infallible but only highly 
effective, say 90% accurate both ways, results start looking unimpressive again. Our net 
false positive rate rises from zero to 22 cases miscalled “tumor,” and we operate 67 of the 
actual tumors instead of 75. The total hit frequency drops to 94.5%, only 4.5% above that 
yielded by a blind guessing of the modal class. 

The Selection Ratio 
Straightforward application of the preceding principles presupposes that the clinical 

decision maker is free to adopt a policy solely on the basis of maximizing hit frequency. 
Sometimes there are external constraints such as staff time, administrative policy, or social 
obligation which further complicate matters. It may then be impossible to make all decis-
ions in accordance with the base rates, and the task given to the test is that of selecting a 
subset of cases which are decided in the direction opposite to the base rates but will still 
contain fewer erroneous decisions than would ever be yielded by opposing the base rates 
without the test. If 80% of patients referred to a Mental Hygiene Clinic are recoverable 
with intensive psychotherapy, we would do better to treat everybody than to utilize a test 
yielding 75% correct predictions. But suppose that available staff time is limited so that we 
can treat only half the referrals. The Bayes-type injunction to “follow the base rates when 
they are better than the test” becomes pragmatically meaningless, for it directs us to make 
decisions which we cannot implement. The imposition of an externally imposed selection 
ratio, not determined on the basis of any maximizing or minimizing policy but by non-
statistical considerations, renders the test worthwhile. 

Prior to imposition of any arbitrary selection ratio, the fourfold table for 100 referrals 
might be as shown in Table 8. If the aim were simply to minimize total errors, we would 
predict “good” for each case and be right 80 times in 100. Using the test, we would be right 
only 75 times in 100. But suppose a selection ratio of .5 is externally imposed. We are then 
forced to predict “poor” for half the cases, even though this “prediction” is, in any given 
case, likely to be wrong. (More precisely, we handle this subset as if we predicted “poor,” 
by refusing to treat.) So we now select our 50 to-be-treated cases from among those 65 who 
fall in the “test-good” array, having a frequency of 60⁄65 = 92.3% hits among those 
selected. This is better than the 80% we could expect (among those selected) by choosing 
half the total referrals at random. Of course we pay for this, by making many “false 
negative” decisions; but these are necessitated, whether we use the test or not, by the fact 
that the selection ratio was determined without regard for hit maximization but by external 
considerations. Without the test, our false negative rate q1 is 50% (i.e., 40 of the 80 “good” 
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cases will be called “poor”); the test reduces the false negative rate to 42.5% (= 34⁄80), 
since 15 cases from above the cutting line must be selected at random for inclusion in the 
not-to-be-treated group below the cutting line [i.e., 20 + (60⁄65)15 = 34]. Stated in terms 
of correct decisions, without the test 40 out of 50 selected for therapy will have a good 
therapeutic outcome; with the test, 46 in 50 will be successes. 

TABLE 8 
Actual and Test-Predicted Therapeutic Outcome 

 Therapeutic Outcome 

Test 
Prediction Good Poor Total 

Good 60 5 65 
Poor 20 15 35 

Total 80 20 100 

Reports of studies in which formulas are developed from psychometrics for the predic-
tion of patients’ continuance in psychotherapy have neglected to consider the relationship 
of the selection ratio to the specific population to which the prediction formula is to be 
applied. In each study the population has consisted of individuals who were accepted for 
therapy by the usual methods employed at an outpatient clinic, and the prediction formula 
has been evaluated only for such patients. It is implied by these studies that the formula 
would have the same efficiency if it were used for the selection of “continuers” from all 
those applying for therapy. Unless the formula is tested on a random sample of applicants 
who are allowed to enter therapy without regard to their test scores, its efficiency for 
selection purposes is unknown. The reported efficiency of the prediction formula in the 
above studies pertains only to its use in a population of patients who have already been 
selected for therapy. There is little likelihood that the formula can be used in any practical 
way for further selection of patients unless the clinic’s therapists are carrying a far greater 
load than they plan to carry in the future. 

The use of the term “selection” (as contrasted with “prediction” or “placement”) ought 
not to blind us to the important differences between industrial selection and its clinical 
analogue. The incidence of false negatives—of potential employees screened out by the test 
who would actually have made good on the job if hired—is of little concern to management 
except as it costs money to give tests. Hence the industrial psychologist may choose to 
express his aim in terms of minimizing the false positives, that is, of seeing to it that the job 
success among those hired is as large a rate as possible. When we make a clinical decision 
to treat or not to treat, we are withholding something from people who have a claim upon 
us in a sense that is much stronger than the “right to work” gives a job applicant any claim 
upon a particular company. So, even though we speak of a “selection ratio” in clinical 
work, it must be remembered that those cases not selected are patients about whom a 
certain kind of important negative decision is being made. 

For any given selection ratio, maximizing total hits is always equivalent to maximizing 
the hit rate for either type of decision (or minimizing the errors of either, or both, kinds), 
since cases shifted from one cell of the table have to be exactly compensated for. If m 
“good” cases that were correctly classified by one decision method are incorrectly classi-
fied by another, maintenance of the selection ratio entails that m cases correctly called 
“poor” are also miscalled “good” by the new method. Hence an externally imposed selec-
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tion ratio eliminates the often troublesome value questions about the relative seriousness of 
the two kinds of errors, since they are unavoidably increased or decreased at exactly the 
same rate. 

If the test yields a score or a continuously varying index of some kind, the values of p1 
and p2 are not fixed, as they may be with “patterns” or “signs.” Changes in the selection 
ratio, R, will then suggest shifting the cutting scores or regions on the basis of the relations 
obtaining among R, P, and the p1, p2 combinations yielded by various cuts. It is worth 
special comment that, in the case of continuous distributions, the optimum procedure is not 
always to move the cut until the total area truncated = NR, selecting all above that cut and 
rejecting all those below. Whether this “obvious” rule is wise or not depends upon the 
distribution characteristics. We have found it easy to construct pairs of distributions such 
that the test is “discriminating” throughout, in the sense that the associated cumulative 
frequencies q1 and q2 maintain the same direction of their inequality everywhere in the 
range, that is, 

  

1
N2

f2 (x)dx
−∞

xi∫ > 1
N1

f1(x)dx
−∞

xi∫   for all xi ; 

yet in which the hit frequency given by a single cut at R is inferior to that given by first 
selecting with a cut which yields Nc < NR, and then picking up the remaining (NR – Nc) 
cases at random below the cut. Other more complex situations may arise in which different 
types of decisions should be made in different regions, actually reversing the policy as we 
move along the test continuum. Such numerical examples as we have constructed utilize 
continuous, unimodal distributions, and involve differences in variability, skewness, and 
kurtosis not greater than those which arise fairly often in clinical practice. Of course the 
utilization of any very complicated pattern of regions requires more stable distribution 
frequencies than are obtainable from the sample sizes ordinarily available to clinicians. 

It is instructive to contemplate some of the moral and administrative issues involved in 
the practical application of the preceding ideas. It is our impression that a good deal of 
clinical research is of the “So what?” variety, not because of defects in experimental design 
such as inadequate cross validation but because it is hard to see just what are the useful 
changes in decision making which could reasonably be expected to follow. Suppose, for 
example, it is shown that “duration of psychotherapy” is 70% predictable from a certain 
test. Are we prepared to propose that those patients whose test scores fall in a certain range 
should not receive treatment? If not, then is it of any real advantage therapeutically to 
“keep in mind” that the patient has 7 out of 10 chances of staying longer than 15 hours, and 
3 out of 10 chances of staying less than that? We are not trying to poke fun at research, 
since presumably almost any lawful relationship stands a chance of being valuable to our 
total scientific comprehension some day. But many clinical papers are ostensibly inspired 
by practical aims, and can be given theoretical interpretation or fitted into any larger 
framework only with great difficulty if at all. It seems appropriate to urge that such 
“practical”-oriented investigations should be really practical, enabling us to see how our 
clinical decisions could rationally be modified in the light of the findings. It is doubtful 
how much of current work could be justified in these terms. 

Regardless of whether the test validity is capable of improving on the base rates, there are 
some prediction problems which have practical import only because of limitations in 
personnel. What other justification is there for the great emphasis in clinical research on 
“prognosis,” “treatability,” or “stayability”? The very formulation of the predictive task as 
“maximizing the number of hits” already presupposes that we intend not to treat some 
cases; since if we treat all comers, the ascertainment of a bad prognosis score has no 
practical effect other than to discourage the therapist (and thus hinder therapy?). If 
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intensive psychotherapy could be offered to all veterans who are willing to accept referral 
to a VA Mental Hygiene Clinic, would it be licit to refuse those who had the poorest 
outlook? Presumably not. It is interesting to contrast the emphasis on prognosis in clinical 
psychology with that in, say, cancer surgery, where the treatment of choice may still have a 
very low probability of “success,” but is nevertheless carried out on the basis of that low 
probability. Nor does this attitude seem unreasonable, since no patient would refuse the 
best available treatment on the ground that even it was only 10% effective. Suppose a 
therapist, in the course of earning his living, spends 200 hours a year on nonimprovers by 
following a decision policy that also results in his unexpected success with one 30-year-old 
“poor bet.” If this client thereby gains 16 × 365 × 40 = 233,600 hours averaging 50% less 
anxiety during the rest of his natural life, it was presumably worth the price. 

These considerations suggest that, with the expansion of professional facilities in the 
behavior field, the prediction problem will be less like that of industrial selection and more 
like that of placement. “To treat or not to treat” or “How treatable” or “How long to treat” 
would be replaced by “What kind of treatment?” But as soon as the problem is formulated 
in this way, the external selection ratio is usually no longer imposed. Only if we are 
deciding between such alternatives as classical analysis and, say, 50-hour interpretative 
therapy would such personnel limitations as can be expected in future years impose an 
arbitrary R. But if the decision is between such alternatives as short-term interpretative 
therapy, Rogerian therapy, Thorne’s directive therapy, hypnotic retraining, and the method 
of tasks (Herzberg, 1945; Salter, 1949; Wolpe, 1952), we could “follow the base rates” by 
treating every patient with the method known to have the highest success frequency among 
patients “similar” to him. The criteria of similarity (class membership) will presumably be 
multiple, both phenotypic and genotypic, and will have been chosen because of their 
empirically demonstrated prognostic relevance rather than by guesswork, as is current 
practice. Such an idealized situation also presupposes that the selection and training of 
psychotherapists will have become socially realistic so that therapeutic personnel skilled in 
the various methods will be available in some reasonable proportion to the incidence with 
which each method is the treatment of choice. 

How close are we to the upper limit of the predictive validity of personality tests, such as 
was reached remarkably early in the development of academic aptitude tests? If the now-
familiar 2⁄3 to 3⁄4 proportions of hits against even-split criterion dichotomies are already 
approaching that upper limit, we may well discover that for many decision problems the 
search for tests that will significantly better the base rates is a rather unrewarding enter-
prise. When the criterion is a more circumscribed trait or symptom (“depressed,” “affilia-
tive,” “sadistic,” and the like), the difficulty of improving upon the base rates is combined 
with the doubtfulness about how valuable it is to have such information with 75% confi-
dence anyhow. But this involves larger issues beyond the scope of the present paper. 

Availability of Information on Base Rates 
The obvious difficulty we face in practical utilization of the preceding formulas arises 

from the fact that actual quantitative knowledge of the base rates is usually lacking. But this 
difficulty must not lead to a dismissal of our considerations as clinically irrelevant. In the 
case of many clinical decisions, chiefly those involving such phenotypic criteria as overt 
symptoms, formal diagnosis, subsequent hospitalization, persistence in therapy, vocational 
or marital adjustment, and the numerous “surface” personality traits which clinicians try to 
assess, the chief reason for our ignorance of the base rates is nothing more subtle than our 
failure to compute them. The file data available in most installations having a fairly stable 
source of clientele would yield values sufficiently accurate to permit minimum and max-
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imum estimates which might be sufficient to decide for or against use of a proposed sign. It 
is our opinion that this rather mundane taxonomic task is of much greater importance than 
has been realized, and we hope that the present paper will impel workers to more 
systematic efforts along these lines. 

Even in the case of more subtle, complex, and genotypic inferences, the situation is far 
from hopeless. Take the case of some such dynamic attribution as “strong latent depend-
ency, which will be anxiety-arousing as therapy proceeds.” If this is so difficult to discern 
even during intensive therapy that a therapist’s rating on it has too little reliability for use as 
a criterion, it is hard to see just what is the value of guessing it from psychometrics. If a 
skilled therapist cannot discriminate the personality characteristic after considerable contact 
with the patient, it is at least debatable whether the characteristic makes any practical 
difference. On the other hand, if it can be reliably judged by therapists, the determination of 
approximate base rates again involves nothing more complex than systematic recording of 
these judgments and subsequent tabulation. Finally, “clinical experience” and “common 
sense” must be invoked when there is nothing better to be had. Surely if the q1⁄q2 ratio for 
a test sign claiming validity for “difficulty in accepting inner drives” shows from the 
formula that the base rate must not exceed .65 to justify use of the sign, we can be fairly 
confident in discarding it for use with any psychiatric population! Such a “backward” use 
of the formula to obtain a maximum useful value of P, in conjunction with the most tolerant 
common-sense estimates of P from daily experience, will often suffice to answer the 
question. If one is really in complete ignorance of the limits within which P lies, then 
obviously no rational judgment as to the probable efficiency of the sign can be made. 

Estimation versus Significance 
A further implication of the foregoing thinking is that the exactness of certain small 

sample statistics, or the relative freedom of certain nonparametric methods from distri-
bution assumptions, has to be stated with care lest it mislead clinicians into an unjustified 
confidence. When an investigator concludes that a sign, item, cutting score, or pattern has 
“validity” on the basis of small sample methods, he has rendered a certain very broad null 
hypothesis unplausible. To decide, however, whether this “validity” warrants clinicians in 
using the test is (as every statistician would insist) a further and more complex question. To 
answer this question, we require more than knowledge that p1 ≠ p2. We need in addition to 
know, with respect to each decision for which the sign is being proposed, whether the 
appropriate inequality involving p1, p2, and P is fulfilled. More than this, since we will 
usually be extrapolating to a somewhat different clinical population, we need to know 
whether altered base rates P′ and Q′ will falsify these inequalities. To do this demands 
estimates of the test parameters p1 and p2, the setting up of confidence belts for their 
difference p1 – p2 rather than the mere proof of their nonidentity. Finally, if the sign is a 
cutting score, we will want to consider shifting it so as to maintain optimal hit frequency 
with new base rates. The effect upon p1 and p2 of a contemplated movement of a critical 
score or band requires a knowledge of distribution form such as only a large sample can 
give. 

As is true in all practical applications of statistical inference, nonmathematical consider-
ations enter into the use of the numerical patterns that exist among P, p1, p2, and R. But 
“pragmatic” judgments initially require a separation of the several probabilities involved, 
some of which may be much more important than others in terms of the human values 
associated with them. In some settings, over-all hit rate is all that we care about. In others, a 
redistribution of the hits and misses even without much total improvement may concern us. 
In still others, the proportions p1 and q2 are of primary interest; and, finally, in some 
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instances the confrontation of a certain increment in the absolute frequency (NPp1) of one 
group identified will outweigh all other considerations. 

Lest our conclusions seem unduly pessimistic, what constructive suggestions can we 
offer? We have already mentioned the following: (a) Searching for subpopulations with 
different base rates; (b) successive-hurdles testing; (c) the fact that even a very small 
percentage of improvement may be worth achieving in certain crucial decisions; (d) the 
need for systematic collection of base-rate data so that our several equations can be applied. 
To these we may add two further “constructive” comments. First, test research attention 
should be largely concentrated upon behaviors having base rates nearer a 50-50 split, since 
it is for these that it is easiest to improve on a base-rate decision policy by use of a test 
having moderate validity. There are, after all, a large number of clinically important traits 
which do not occur “almost always” or “very rarely.” Test research might be slanted more 
toward them; the current popularity of Q-sort approaches should facilitate the growth of 
such an emphasis, by directing attention to items having a reasonable “spread” in the 
clinical population. Exceptions to such a research policy will arise, in those rare domains 
where the pragmatic consequences of the alternative decisions justify focusing attention 
almost wholly on maximizing Pp1, with relative neglect of Qp2. Secondly, we think the 
injunction “quit wasting time on noncontributory psychometrics” is really constructive. 
When the clinical psychologist sees the near futility of predicting rare or near-universal 
events and traits from test validities incapable of improving upon the base rates, his clinical 
time is freed for more economically defensible activities, such as research which will 
improve the parameters p1 and p2; and for treating patients rather than uttering low-
confidence prophecies or truisms about them (in this connection see Meehl, 1954/1996, pp. 
vii [1996, p. xv], 7, 127-128). It has not been our intention to be dogmatic about “what is 
worth finding out, how often.” We do suggest that the clinical use of patterns, cutting 
scores, and signs, or research efforts devoted to the discovery of such, should always be 
evaluated in the light of the simple algebraic fact discovered in 1763 by Mr. Bayes. 

Summary 
1. The practical value of a psychometric sign, pattern, or cutting score depends jointly 

upon its intrinsic validity (in the usual sense of its discriminating power) and the distri-
bution of the criterion variable (base rates) in the clinical population. Almost all contem-
porary research reporting neglects the base-rate factor and hence makes evaluation of test 
usefulness difficult or impossible. 

2. In some circumstances, notably when the base rates of the criterion classification 
deviate greatly from a 50 percent split, use of a test sign having slight or moderate validity 
will result in an increase of erroneous clinical decisions. 

3. Even if the test’s parameters are precisely known, so that ordinary cross-validation 
shrinkage is not a problem, application of a sign within a population having these same test 
parameters but a different base rate may result in a marked change in the proportion of 
correct decisions. For this reason validation studies should present trustworthy information 
respecting the criterion distribution in addition to such test parameters as false positive and 
false negative rates. 

4. Establishment of “validity” by exact small sample statistics, since it does not yield 
accurate information about the test parameters (a problem of estimation rather than signifi-
cance), does not permit trustworthy judgments as to test usefulness in a new population 
with different or unknown base rates. 

5. Formulas are presented for determining limits upon relations among (a) the base rates, 
(b) false negative rate, and (c) false positive rate which must obtain if use of the test sign is 
to improve clinical decision making. 
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6. If, however, external constraints (e.g., available staff time) render it administratively 
unfeasible to decide all cases in accordance with the base rates, a test sign may be worth 
applying even if following the base rates would maximize the total correct decisions, were 
such a policy possible. 

7. Trustworthy information as to the base rates of various patient characteristics can 
readily be obtained by file research, and test development should (other things being equal) 
be concentrated on those characteristics having base rates nearer .50 rather than close to .00 
or 1.00. 

8. The basic rationale is that of Bayes’ Theorem concerning the calculation of so-called 
“inverse probability.” 
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